❄️ Snowflake Lateral Joins – Unlocking the Power of Table Functions


In the world of modern analytics, semi-structured data like JSON and arrays have become the norm. But querying nested arrays or invoking table functions in SQL can be complex — unless you know Snowflake Lateral Joins.

The LATERAL JOIN (also called a Lateral View) is a powerful SQL feature that allows one table to reference the output of a table function — such as FLATTEN(), SPLIT_TO_TABLE(), or even custom user-defined functions (UDFs).

In short:

A Lateral Join lets you expand nested data or generate rows dynamically — all inside a SQL query.


🧩 What Is a Lateral Join in Snowflake?

A Lateral Join allows a subquery or table function to access columns from the table being joined. It’s often used with table functions that return multiple rows for each input row.

🧠 Syntax:

FROM <table1>, LATERAL <table_function>(<table1.column>)

or equivalently:

FROM <table1>
JOIN LATERAL <table_function>(<table1.column>) ON TRUE

🔍 Key Point:

The LATERAL keyword allows the function to “see” columns from the left-hand table — something a regular join cannot do.


🧭 ** – Lateral Join Workflow**

Main Table

LATERAL Keyword

Table Function e.g FLATTEN, SPLIT

Expanded Rows

Final Query Results


⚙️ Why Lateral Joins Matter

FeatureDescription
Access to Outer ColumnsTable functions can reference columns from the main table.
Expanding ArraysPerfect for flattening nested JSON or array columns.
Dynamic Row GenerationConverts a single row into multiple records.
Supports Table Functionse.g., FLATTEN(), SPLIT_TO_TABLE(), SEQUENCE().
Enhances Data NormalizationTransforms unstructured data into tabular form.

🧠 Understanding Table Functions

A table function in Snowflake is a function that returns a set of rows instead of a single value.

Common examples:

  • FLATTEN() – expands JSON arrays
  • SPLIT_TO_TABLE() – splits a string into multiple rows
  • GENERATE_SERIES() – generates a range of numbers

You can use LATERAL JOIN to attach these results to other table data dynamically.


🧩 Example 1 – Flattening JSON Arrays Using LATERAL JOIN

Let’s start with the most common use case: expanding JSON arrays.

💾 Step 1: Create a table with JSON data

CREATE OR REPLACE TABLE orders (
order_id INT,
order_data VARIANT
);
INSERT INTO orders VALUES
(1, PARSE_JSON('{"items": ["Laptop", "Mouse", "Keyboard"]}')),
(2, PARSE_JSON('{"items": ["Monitor", "HDMI Cable"]}'));

💡 Step 2: Query with LATERAL JOIN

SELECT
order_id,
item.value::string AS product
FROM orders,
LATERAL FLATTEN(input => order_data:items) AS item;

✅ Output:

order_idproduct
1Laptop
1Mouse
1Keyboard
2Monitor
2HDMI Cable

🧠 Explanation

  • The FLATTEN() function expands JSON arrays into rows.
  • The LATERAL keyword lets FLATTEN access the order_data column.
  • Each element in the JSON array becomes a new row in the output.

Use Case: Useful for flattening event logs, arrays, or JSON payloads for analysis.


🧩 Example 2 – Splitting Strings Using LATERAL JOIN

Let’s split a comma-separated string into rows.

CREATE OR REPLACE TABLE employees (
emp_id INT,
skills STRING
);
INSERT INTO employees VALUES
(1, 'SQL,Python,Java'),
(2, 'Snowflake,AWS,Terraform');

🧩 Query Using SPLIT_TO_TABLE()

SELECT
emp_id,
skill.value AS skill
FROM employees,
LATERAL SPLIT_TO_TABLE(skills, ',') AS skill;

✅ Output:

emp_idskill
1SQL
1Python
1Java
2Snowflake
2AWS
2Terraform

🧠 Explanation

  • SPLIT_TO_TABLE() turns a string into multiple rows.
  • Using LATERAL, we associate the generated rows back to the employee.
  • Without LATERAL, the function wouldn’t know which skills value to reference.

Use Case: Transforming CSV-like strings in data ingestion or ETL pipelines.


🧩 Example 3 – Using LATERAL JOIN with SEQUENCE() Function

We can use LATERAL JOIN to generate numeric sequences per row — perfect for generating IDs or partitions.

CREATE OR REPLACE TABLE projects (
project_id INT,
num_tasks INT
);
INSERT INTO projects VALUES
(101, 3),
(102, 2);

🧩 Query Using LATERAL SEQUENCE

SELECT
project_id,
seq.value::int AS task_number
FROM projects,
LATERAL TABLE(GENERATOR(ROWCOUNT => num_tasks)) AS seq;

✅ Output:

project_idtask_number
1010
1011
1012
1020
1021

🧠 Explanation

  • The GENERATOR() function creates a series of rows.
  • LATERAL allows each project to use its num_tasks as a parameter.
  • The result: each project expands into multiple task rows dynamically.

Use Case: Generating dynamic iterations, sequences, or expanding metadata for automation.


🧭 ** – Lateral Join Data Flow**

Main Table

LATERAL Keyword

Table Function

Expanded Data Rows

Combined Query Result


🧠 When to Use Lateral Joins

Use CaseDescription
Flatten JSON arraysConvert nested data to rows
Split stringsSeparate comma-separated fields
Generate sequencesExpand row into numeric range
Dynamic transformationsUse table functions that depend on column values
Simplify ETL workflowsAvoid complex joins or stored procedures

⚙️ Why Lateral Joins Are Important

BenefitDescription
Powerful Data NormalizationConverts unstructured JSON to relational form
Simplifies QueriesReplaces nested subqueries
Boosts PerformanceReduces need for procedural logic
Increases ReusabilityIntegrates with table functions easily
Universal UseWorks with any table function in Snowflake

🧠 Mnemonic to Remember LATERAL JOIN

L.A.T.E.R.A.L = “Let Another Table Execute Repeatedly Across Left.”

LetterMeaning
LLet
AAnother
TTable Function
EExecute
RRepeatedly
AAcross
LLeft Table Columns

💡 Memory Hook: Think of LATERAL as “Left Table Access Required Always.”


🧩 Difference Between LATERAL JOIN and CROSS JOIN

FeatureLATERAL JOINCROSS JOIN
Access Outer Columns✅ Yes❌ No
Works with Table Functions✅ Yes❌ No
Expands Nested Data✅ Yes❌ No
Produces Cartesian Product❌ No✅ Yes
Common UseJSON, SPLIT, SEQUENCEStatic combinations

🧠 How to Remember for Interviews & Exams

Here’s a step-by-step memory map for Lateral Joins:

StepConceptMnemonic
1LATERAL keyword“See the left table”
2Table function“FLATTEN, SPLIT, or GENERATE”
3Input column“The data to explode”
4Output alias“Reference each value as .value”
5SQL patternFROM table, LATERAL function() AS alias

Practice Trick: Use this template in your head:

SELECT ... FROM t, LATERAL function(t.column) AS alias;

🧭 Why It’s Essential to Learn

  1. Real-world JSON handling → APIs, IoT, logs
  2. Simplifies ETL → Transform data without Python/Spark
  3. Appears in SnowPro certification exams
  4. Used by data engineers daily in ingestion pipelines
  5. Improves SQL fluency in analytics workflows

🧩 Example 4 – Combining LATERAL with JSON and Aggregation

CREATE OR REPLACE TABLE sales (
region STRING,
data VARIANT
);
INSERT INTO sales VALUES
('North', PARSE_JSON('{"sales": [100, 200, 150]}')),
('South', PARSE_JSON('{"sales": [50, 75, 125]}'));
SELECT
region,
AVG(value::int) AS avg_sales
FROM sales,
LATERAL FLATTEN(input => data:sales)
GROUP BY region;

✅ Output:

regionavg_sales
North150
South83.3

Use Case: Aggregate data within nested structures.


🧩 Example 5 – LATERAL with SPLIT_TO_TABLE() and Aggregation

CREATE OR REPLACE TABLE reviews (
review_id INT,
tags STRING
);
INSERT INTO reviews VALUES
(1, 'positive,verified,fast-delivery'),
(2, 'negative,late-shipment');
SELECT
review_id,
COUNT(tag.value) AS tag_count
FROM reviews,
LATERAL SPLIT_TO_TABLE(tags, ',') AS tag
GROUP BY review_id;

Output:

review_idtag_count
13
22

🧩 Example 6 – Nested LATERAL JOINs

You can even use multiple LATERAL JOINs together!

CREATE OR REPLACE TABLE orders_multi (
id INT,
data VARIANT
);
INSERT INTO orders_multi VALUES
(1, PARSE_JSON('{"items":["Keyboard","Mouse"],"prices":[20,15]}'));
SELECT
id,
item.value::string AS product,
price.value::int AS cost
FROM orders_multi,
LATERAL FLATTEN(input => data:items) AS item,
LATERAL FLATTEN(input => data:prices) AS price;

Output:

idproductcost
1Keyboard20
1Mouse15

🧠 ** – Nested LATERAL JOINs**

Orders Table

LATERAL FLATTEN-items

LATERAL FLATTEN-prices

Expanded Items

Final Combined Table


⚙️ Performance Considerations

TipWhy It Helps
Use only necessary fieldsAvoid scanning entire JSON
Filter before FLATTENReduces data volume
Limit FLATTEN depthPrevents data explosion
Avoid nested LATERAL unnecessarilySimplifies logic
Use clustering when possibleSpeeds up repeated queries

🧠 Common Mistakes

MistakeFix
Forgetting LATERAL keywordAlways add LATERAL before table function
Using wrong alias referenceUse .value after alias
Not handling arraysWrap array columns with FLATTEN()
Joining without ON TRUEAdd ON TRUE for clarity

🧩 Real-World Use Cases

IndustryExample
E-commerceExpand JSON order items
FinanceSplit transaction tags or event logs
IoTFlatten sensor readings arrays
MarketingSplit campaign keywords
Data WarehousingIntegrate semi-structured data into structured tables

🧠 Exam & Interview Preparation Strategy

  1. Memorize syntax patterns

    FROM table, LATERAL FLATTEN(input => column)
  2. Understand use cases

    • JSON flattening
    • String splitting
    • Dynamic expansion
  3. Practice examples on Snowflake UI.

  4. Remember difference between CROSS JOIN and LATERAL.

  5. Draw diagrams to visualize the flow.


🎯 Summary

ConceptKey Takeaway
DefinitionLATERAL JOIN lets table functions access left table columns
Core FunctionsFLATTEN(), SPLIT_TO_TABLE(), GENERATOR()
SyntaxFROM t, LATERAL function(t.col)
PurposeFlatten arrays, split strings, generate dynamic rows
BenefitSimplifies complex SQL on semi-structured data

🧠 Conclusion

The Snowflake Lateral Join is a cornerstone feature for modern data engineers and analysts. It bridges the gap between structured and semi-structured data, allowing flexible, dynamic transformations without complicated code or external ETL tools.

By mastering LATERAL JOINs, you’ll confidently handle JSON, arrays, and table functions — making your SQL more powerful, reusable, and scalable.