Amazon Web Services
Compute
- AWS EC2
- EC2 Instance Types
- EC2 Pricing Models
- EC2 Auto Scaling
- Elastic Load Balancing-ELB
- AWS Lambda – Serverless Computing
- Amazon Lightsail
- AWS Elastic Beanstalk
- AWS Fargate
- Amazon ECS (Elastic Container Service)
- Amazon EKS (Elastic Kubernetes Service)
DynamoDB
- DynamoDB Global Table vs Regular DynamoDB Table
- DynamoDB Streams
- Athena query data to DynamoDB
- Athena Query Results with DynamoDB
- PySpark DataFrame to DynamoDB
Redshift
Lambda
Glue
Lambda
Storage
- S3 vs. EBS vs. EFS
- Amazon S3 (Simple Storage Service)
- Amazon S3 Storage Classes
- Amazon EBS (Elastic Block Store)
- Amazon EFS (Elastic File System)
- AWS Storage Gateway
- AWS Snowball
- Amazon FSx
- AWS Backup
Security
⚙️ Mastering EC2 Auto Scaling: How AWS Automatically Adjusts Instances Based on Demand
Imagine you’re running an e-commerce website. During normal hours, you only need a couple of servers to handle traffic. But on Black Friday, traffic spikes 20x, and your servers crash. Buying 20 servers upfront would be wasteful since most of the year, they’d sit idle.
This is where EC2 Auto Scaling comes in.
Amazon EC2 Auto Scaling allows your infrastructure to automatically adjust the number of EC2 instances based on demand. When demand increases, Auto Scaling adds more instances. When demand drops, it removes unnecessary instances.
Benefits include:
- High availability – Always enough instances to handle traffic.
- Cost savings – Only pay for what you need.
- Fault tolerance – Replace unhealthy instances automatically.
This makes Auto Scaling a critical skill for cloud engineers, architects, and exam candidates.
🔑 Key Concepts of EC2 Auto Scaling
Before diving into examples, let’s outline the main building blocks:
-
Auto Scaling Group (ASG)
- Logical group of EC2 instances.
- Defines minimum, maximum, and desired capacity.
-
Launch Template / Launch Configuration
- Defines instance type, AMI, key pair, security groups.
- Used when scaling new instances.
-
Scaling Policies
- Dynamic Scaling: react to CloudWatch metrics (CPU, request count).
- Scheduled Scaling: scale at fixed times.
- Predictive Scaling: use ML to forecast traffic.
-
Health Checks
- Ensures unhealthy instances are terminated and replaced.
🔥 1. Creating an Auto Scaling Group
📌 What It Means
An Auto Scaling Group (ASG) is the heart of EC2 Auto Scaling. It controls how many instances run at any given time.
You define:
- Min size (always running).
- Max size (upper limit).
- Desired capacity (initial target).
🖥️ Example Programs for Auto Scaling Group
Example 1: Create Launch Template (CLI)
aws ec2 create-launch-template \ --launch-template-name myTemplate \ --version-description "v1" \ --launch-template-data '{ "ImageId":"ami-0abcdef1234567890", "InstanceType":"t3.micro", "KeyName":"MyKeyPair", "SecurityGroupIds":["sg-12345678"] }'
Example 2: Create Auto Scaling Group (CLI)
aws autoscaling create-auto-scaling-group \ --auto-scaling-group-name myASG \ --launch-template LaunchTemplateName=myTemplate,Version=1 \ --min-size 1 \ --max-size 5 \ --desired-capacity 2 \ --vpc-zone-identifier "subnet-abc123,subnet-def456"
Example 3: Python Boto3 Example
import boto3
asg = boto3.client('autoscaling')
asg.create_auto_scaling_group( AutoScalingGroupName='myASG', LaunchTemplate={'LaunchTemplateName': 'myTemplate', 'Version': '1'}, MinSize=1, MaxSize=5, DesiredCapacity=2, VPCZoneIdentifier='subnet-abc123,subnet-def456')
🔥 2. Dynamic Scaling Policies
📌 What It Means
Dynamic scaling policies adjust capacity based on real-time CloudWatch metrics (like CPUUtilization).
Types:
- Target tracking – keep a metric at a target value.
- Step scaling – scale in/out by set increments.
- Simple scaling – single adjustment rule.
🖥️ Example Programs for Dynamic Scaling
Example 1: Target Tracking Policy (CLI)
aws autoscaling put-scaling-policy \ --policy-name cpuPolicy \ --auto-scaling-group-name myASG \ --policy-type TargetTrackingScaling \ --target-tracking-configuration '{ "PredefinedMetricSpecification": { "PredefinedMetricType": "ASGAverageCPUUtilization" }, "TargetValue": 50.0 }'
Example 2: Step Scaling Policy (Python)
import boto3
asg = boto3.client('autoscaling')
asg.put_scaling_policy( AutoScalingGroupName='myASG', PolicyName='stepScale', PolicyType='StepScaling', AdjustmentType='ChangeInCapacity', StepAdjustments=[{'MetricIntervalLowerBound': 0, 'ScalingAdjustment': 2}])
Example 3: Simple Scaling Policy (CLI)
aws autoscaling put-scaling-policy \ --auto-scaling-group-name myASG \ --policy-name scaleOut \ --scaling-adjustment 1 \ --adjustment-type ChangeInCapacity
🔥 3. Scheduled Scaling
📌 What It Means
Scale at specific times, useful for predictable workloads.
Example: Increase capacity every weekday at 9 AM, reduce at 6 PM.
🖥️ Example Programs for Scheduled Scaling
Example 1: CLI Scheduled Action
aws autoscaling put-scheduled-update-group-action \ --auto-scaling-group-name myASG \ --scheduled-action-name scaleUpMorning \ --start-time "2025-09-01T09:00:00Z" \ --desired-capacity 4
Example 2: Python Scheduled Action
import boto3
asg = boto3.client('autoscaling')
asg.put_scheduled_update_group_action( AutoScalingGroupName='myASG', ScheduledActionName='scaleDownEvening', StartTime='2025-09-01T18:00:00Z', DesiredCapacity=1)
Example 3: Terraform Scheduled Scaling
resource "aws_autoscaling_schedule" "scale_up" { scheduled_action_name = "scaleUpMorning" min_size = 2 max_size = 5 desired_capacity = 4 start_time = "2025-09-01T09:00:00Z" autoscaling_group_name = aws_autoscaling_group.myASG.name}
🔥 4. Predictive Scaling
📌 What It Means
AWS uses machine learning to forecast traffic and scale in advance.
Great for workloads with seasonal or daily patterns (e.g., retail sales, trading apps).
🖥️ Example Programs for Predictive Scaling
Example 1: CLI Predictive Scaling Policy
aws autoscaling put-scaling-policy \ --policy-name predictivePolicy \ --auto-scaling-group-name myASG \ --policy-type PredictiveScaling
Example 2: Python Predictive Scaling
import boto3
asg = boto3.client('autoscaling')
asg.put_scaling_policy( AutoScalingGroupName='myASG', PolicyName='predictScale', PolicyType='PredictiveScaling')
Example 3: CloudFormation Template
Resources: PredictiveScalingPolicy: Type: AWS::AutoScaling::ScalingPolicy Properties: AutoScalingGroupName: myASG PolicyType: PredictiveScaling
🧠 How to Remember for Interview & Exam
- Auto Scaling Group → Defines min/max/desired capacity. (Think: “the container of instances”).
- Dynamic Scaling → Reacts to CloudWatch metrics. (Think: “reactive doctor”).
- Scheduled Scaling → Based on time. (Think: “alarm clock scaling”).
- Predictive Scaling → Forecasts demand. (Think: “crystal ball scaling”).
👉 Trick: Remember DASP = Dynamic, Auto Scaling Group, Scheduled, Predictive.
🎯 Why It’s Important to Learn Auto Scaling
- High Availability – Ensures apps stay online under load.
- Cost Optimization – Scale down when idle, save money.
- Fault Tolerance – Automatically replaces unhealthy instances.
- Elasticity – Core principle of cloud computing.
- Interview/Exam Prep – AWS certifications (Solutions Architect, SysOps) always include Auto Scaling.
📌 Conclusion
EC2 Auto Scaling is one of the most powerful and cost-saving features of AWS. By defining groups, policies, and schedules, you can ensure your applications always run with the right capacity at the right time.
To recap:
- Auto Scaling Groups define min, max, and desired capacity.
- Dynamic Scaling reacts to real-time load.
- Scheduled Scaling handles predictable patterns.
- Predictive Scaling forecasts future demand.
Mastering Auto Scaling helps you build resilient, cost-efficient, and highly available applications—and it’s a must-know for both real-world projects and AWS exams.
✨ Pro Tip for Exams: Always ask → Is the scaling based on metrics, time, or forecasts? That’s how you identify the right Auto Scaling method.
Would you like me to also add a cheat sheet comparison table (Dynamic vs Scheduled vs Predictive) so you can use it for quick exam revision?